Research Risk Factors in Monitoring Well Drilling—A Case Study Using Machine Learning Methods

نویسندگان

چکیده

This article takes an approach to creating a machine learning model for the oil and gas industry. task is dedicated most up-to-date issues of artificial intelligence. One goals this research was build predict possible risks arising in process drilling wells. Drilling wells production highly complex expensive part reservoir development. Thus, together with injury prevention, there goal save cost expenditures on downtime repair equipment. Nowadays, companies have begun look ways improve efficiency minimize non-production time help new technologies. To support decisions narrow frame, it valuable early warning system. Such decision system will engineer intervene prevent high expenses unproductive equipment due problem. work describes comparison algorithms anomaly detection during well drilling. In particular, make when determining geometry grid wells—the nature relative position injection at facility. Development systems are often subdivided into following: placement along symmetric grid, non-symmetric (mainly rows). The tested models classify problems based historical data from previously drilled validate algorithms, we used logs 67 large brownfield Siberia, Russia. Wells were selected analyzed. It should be noted that out wells, 20 without time. experiential results illustrate gradient boosting can complications better than other models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of remote sensing indicators in drought monitoring using machine learning algorithms (Case study: Marivan city)

Remote sensing indices are used to analyze the Spatio-temporal distribution of drought conditions and to identify the severity of drought. This study, using various drought indices generated from Madis and TRMM satellite data extracted from Google Earth Engine (GEE) platform. Drought conditions in Marivan city from February to November for the years 2001 to 2017 were analyzed based on spatial a...

متن کامل

Advanced machine learning methods for wind erosion monitoring in southern Iran

Extended abstract Introduction Wind erosion is one the most important factors of land degradation in the arid and semi-arid areas and it is one the most serious environmental problems in the world. In Fars province, 17 cities are prone to wind erosion and are considered as critical zones of wind erosion. One of the most important factors in soil wind erosion is land use/cover change. T...

متن کامل

Investigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)

Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...

متن کامل

Alzheimer's Disease Risk Assessment Using Large-Scale Machine Learning Methods

The goal of this work is to introduce new metrics to assess risk of Alzheimer's disease (AD) which we call AD Pattern Similarity (AD-PS) scores. These metrics are the conditional probabilities modeled by large-scale regularized logistic regression. The AD-PS scores derived from structural MRI and cognitive test data were tested across different situations using data from the Alzheimer's Disease...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2021

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym13071293